数形结合思想在GMAT数学中的应用.

2017-08-11 作者: 198阅读

  想要迅速提高GMAT数学的考试成绩,考生需要在熟练掌握GMAT数学备考要点的基础上,掌握一些实用的解题技巧,以提高GMAT数学的备考效率。下面澳际留学就来为大家简单介绍一下五大数学思想之一的数形结合思想在GMAT数学考试中的应用,希望能够为考生备考GMAT数学带来帮助。更多相关问题可咨询澳际留学在线专家,如果有任何意见和建议,也请联系我们。

数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.

评注:利用函数的图象不仅可以直观地讨论函数的性质,而且可以解决与函数有关的问题,如它在解不等式、方程中的应用显然体现的是一种创新意识,同时也体会到了数学的简明性,这正如庞加莱所说的“数学的优美感,不过是问题的解答适合我们的心灵需要而产生的一种满足感”.
  

以上对换元数学思想在GMAT数学考试中的使用方法进行了简单的阐述,考生可以适当借鉴,并结合以上内容不断归纳和总结GMAT数学的备考方法,从而迅速提升GMAT数学考试成绩。

  相关链接

1.换元思想在GMAT数学中的应用

2.GMAT数学精华题型解析汇总

3.760分考生详解GMAT考试之GMAT数学

留学咨询

更多出国留学最新动态,敬请关注澳际教育手机端网站,并可拨打咨询热线:400-601-0022
  • 专家推荐
  • 成功案例
  • 博文推荐
  • 高国强 向我咨询

    行业年龄 11年

    成功案例 2937人

    留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。

  • Tara 向我咨询

    行业年龄 6年

    成功案例 1602人

  • Cindy 向我咨询

    行业年龄 18年

    成功案例 4806人

    精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。

  • 薛占秋 向我咨询

    行业年龄 10年

    成功案例 1869人

    从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。

  • PTE寒假班招生计划!

    934人阅读 查看原文

  • Talk to ANU | 2024澳国立线上信息分享会

    1586人阅读 查看原文

  • 墨尔本大学商、法、教育三大学院见面会 & 咨询会 | 北京 · 武汉 · 南京精彩启程!

    1412人阅读 查看原文

  • 活动预告 | 蒙纳士大学携手英国文化教育协会雅思官方与你鹏城有约,飞跃无限

    1169人阅读 查看原文

我要查

澳际服务

我要读

热门国家申请