GMAT数学解题中必须具备的思想.

2017-08-11 作者: 195阅读

  本文为大家介绍GMAT数学解题中必须具备的五个思想供大家参考,这五个思想在考试中半数以上的题目都能用到的,希望大家能够牢记。

  1.换元思想

  换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的.

  2.数形结合思想

  数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.

  3.转化与化归思想

  所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.

  转化与化归的思想方法是数学中最基本的思想方法.数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.

  4.函数与方程思想

  函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的.

  5.分类讨论思想

  所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是“化整为零,各个击破,再积零为整”的策略. 分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”

  至此,数学五大思想全部介绍完毕,希望大家都能从中有所收获。

  以上就是的详细内容GMAT数学解题中必须具备的五个思想,考生可针对文中介绍的方法进行有针对性的备考。最后,预祝大家在GMAT考试中取得好成绩!

留学咨询

更多出国留学最新动态,敬请关注澳际教育手机端网站,并可拨打咨询热线:400-601-0022
  • 专家推荐
  • 成功案例
  • 博文推荐
  • 高国强 向我咨询

    行业年龄 11年

    成功案例 2937人

    留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。

  • Tara 向我咨询

    行业年龄 6年

    成功案例 1602人

  • Cindy 向我咨询

    行业年龄 18年

    成功案例 4806人

    精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。

  • 薛占秋 向我咨询

    行业年龄 10年

    成功案例 1869人

    从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。

  • PTE寒假班招生计划!

    933人阅读 查看原文

  • Talk to ANU | 2024澳国立线上信息分享会

    1584人阅读 查看原文

  • 墨尔本大学商、法、教育三大学院见面会 & 咨询会 | 北京 · 武汉 · 南京精彩启程!

    1412人阅读 查看原文

  • 活动预告 | 蒙纳士大学携手英国文化教育协会雅思官方与你鹏城有约,飞跃无限

    1168人阅读 查看原文

我要查

澳际服务

我要读

热门国家申请