有关GMAT数学机经及难题的相关介绍.

2017-08-11 作者: 225阅读

  GMAT机经对考生的帮助是不言而喻的。对于GMAT考试数学这部分来说,也有很多GMAT数学机经供我们复习使用。下面小编就将对GMAT数学机经及一些解决数学难题的方法进行简单介绍,希望对大家有所帮助。

  一.GMAT数学机经对于GMAT考试的意义

  1.每一次换题库后GMAT机经的重复概率都在三分之一,按照正常的概率分布,将机经扫一遍,起码会遇到十道以上的原题。

  2.考生之所以能在考后回忆起来这些机经,说明这些题是费了他们一定脑力的,才能回忆起来。也就是说遇到的原题应该都是有一定难度的。这样在考试时就节约了时间,在做难题时也有了思路下手

  二 有争议的题以及难题例题解析

  1.DS: 问能否确定一个四边形是不是平行四边形?

  (1) each of sides of the 四边形 is 7

  (2) each of two opposite sides of 四边形 is 3

  这道题引起的争议在于1)判断四边形是平行四边形的定义是什么。2)条件2是什么意思

  平行四边形的判定:①两组对边分别平行的四边形是平行四边形。②一组对边平行且相等的四边形是平行四边形。③两组对边分别相等的四边形是平行四边形。④两组对角分别相等的四边形是平行四边形。⑤对角线互相平分的四边形是平行四边形。⑥邻角互补的四边形是平行四边形

  条件2:一组对边的两条边都是3(并不是两组对边的每条边都是3)

  因此此题选A

  2.K is one less than product of all the prime intergers,2-23,inclusive, following choices哪几个成立:K可以被2-23中的几个数整除/K可以被30整除/K可以被大于23的某质数整除

  设2到23的质数乘积为S,S一定是偶数,K和S相邻,K一定是奇数。因为相邻的奇数和偶数一定是互质的,所以K的质因数中不可能含有2到23的任何一个数,所以K不能被2-23中的几个数整除

  假设存在这样的一个质数,这个自然成立,假设不存在,那么K本来就是一个大于23的质数,是可以被自己整除的。

  因此K可以被30整除/K可以被大于23的某质数整除是成立的。

  三 总结

  以上的例题说明,在面对GMAT机经中比较难或者是模糊不清的有争议的题时,要冷静地从基础定义开始分析起。大家可以从例题看出,有的题(例如2)解题方法和思路是相对比较复杂的,因此就要求大家在使用机经的时候,一定要在理解的基础上自己会做这个题,而不是记答案。这样遇到类似的难题就会有思路,也能节约时间。

  以上就是澳际小编今天为大家总结的关于GMAT数学机经及其难题解析的详细内容, GMAT机经是非常宝贵的资料,所以考生们要积极利用好它。希望此篇文章能够对备考GMAT考试的考生带来帮助,祝大家数学考试取得好的成绩

  澳际六步曲体系 TSSS源于经验、责任、使命、灵感和天才,充分凝聚每一个澳际人的智慧以及数千个名校成功录取案例的经验。澳际引进世界顶级咨询公司先进咨询服务模型和西方职业评估体系基础上,结合申请人在海外求学路上的切实困惑和需求,开创出来的全新留学服务体系。“澳际六步曲”的宗旨是打破传统留学中介代理的服务模式,关注就业,重视科学职业规划,强调授人以“渔”。协助申请人创建自己从未意识到的申请名校的竞争优势(Create your own edge)。澳际旨在成为中国留学行业的改革者和新规则的制定者。我们要破除已有的习惯性思维,推行同样的变革和创新。

留学咨询

更多出国留学最新动态,敬请关注澳际教育手机端网站,并可拨打咨询热线:400-601-0022
  • 专家推荐
  • 成功案例
  • 博文推荐
  • 高国强 向我咨询

    行业年龄 11年

    成功案例 2937人

    留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。

  • Tara 向我咨询

    行业年龄 6年

    成功案例 1602人

  • 薛占秋 向我咨询

    行业年龄 10年

    成功案例 1869人

    从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。

  • Cindy 向我咨询

    行业年龄 18年

    成功案例 4806人

    精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。

  • Talk to ANU | 2024澳国立线上信息分享会

    1535人阅读 查看原文

  • 墨尔本大学商、法、教育三大学院见面会 & 咨询会 | 北京 · 武汉 · 南京精彩启程!

    1388人阅读 查看原文

  • 活动预告 | 蒙纳士大学携手英国文化教育协会雅思官方与你鹏城有约,飞跃无限

    1141人阅读 查看原文

  • 惊喜加倍|2024蒙纳士大学中国开放日(上海)和中国学生见面会(深圳)共同起航!

    1399人阅读 查看原文

我要查

澳际服务

我要读

热门国家申请