2017-08-11 290阅读
对于国内的GMAT考试考生来说GMAT数学考试一直是最简单的一部分,因为它对知识点的考察只是我们的中学的水平,再掌握足够的词汇量的基础上再掌握一些技巧大家取得满分高分就很简单了,下面澳际留学小编就为大家介绍一下GMAT数学思维培养的方法。
以下便是有关GMAT数学考试的5中思维能力,请大家在GMAT考试备考中注意。
GMAT数学思维1.换元思想
换元法又称变量替换法,即根据所要求解的式子的结构特征,巧妙地设置新的变量来替代原来表达式中的某些式子或变量,对新的变量求出结果后,返回去再求出原变量的结果.换元法通过引入新的变量,将分散的条件联系起来,使超越式化为有理式、高次式化为低次式、隐性关系式化为显性关系式,从而达到化繁为简、变未知为已知的目的.
GMAT数学思维2.数形结合思想
数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体. 通过“形”往往可以解决用“数”很难解决的问题.
GMAT数学思维3.转化与化归思想
所谓转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过转化为简单的问题,将难解的问题通过变换转化为容易的问题,将未解决的问题变换转化为已解决的问题.
转化与化归的思想方法是数学中最基本的思想方法.数学中一切问题的解决都离不开转化与化归,数形结合思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,以上三种思想方法都是转化与化归思想的具体体现.各种变换法、分析法、反证法、待定系数法、构造法等都是转化的手段.所以说转化与化归是数学思想方法的灵魂.
GMAT数学思维4.函数与方程思想
函数思想指运用函数的概念和性质,通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题.方程思想是通过对问题的观察、分析、判断等一系列的思维过程中,具备标新立异、独树一帜的深刻性、独创性思维,将问题化归为方程的问题,利用方程的性质、定理,实现问题与方程的互相转化接轨,达到解决问题的目的.
GMAT数学思维5.分类讨论思想
所谓分类讨论,就是当问题所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类分别研究,得出每一类的结论,最后综合各类的结果得到整个问题的解答.实质上分类讨论是 “化整为零,各个击破,再积零为整”的策略. 分类讨论时应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.”
换元思路,数形结合思路,转化与化归思路,函数以及方程思路以及分类讨论思路就是GMAC想考察的五大GMAT数学思维,可以看出,虽然题目本身的难度不大,但是对于基本思维的方式的考察却非常的全面,最后祝大家都能考出好成绩。
以上澳际留学小编为大家介绍的GMAT数学考试思维能力培养的方法,希望对大家的GMAT数学满分有一定的帮助,只要大家努力储备词汇再结合这些技巧的帮助,相信大家的GMAT数学满分一定会轻松取得,更多GMAT考试的技巧请关注澳际留学网站每日更新。
澳际六步曲服务体系由六大步骤和36项子模块组成,核心内容包括留学理性规划和背景提升、考试个性化辅导、文书创作和学校申请、套磁和面试、签证辅导及后期服务、海内外求职。澳际六步曲体系贯穿澳际所有服务项目:美国名校本科申请,名校硕士申请,博士奖学金申请,TOP 20 MBA精英申请,英国/加拿大TOP 10申请等。澳际六步曲服务体系适合人群:适合现在高一、高二、大一、大二和大三的学生,希望自己未雨绸缪,从根本上提升申请竞争力,从而于毕业之际成功步入世界名校。
Copyright 2000 - 2020 北京澳际教育咨询有限公司
www.aoji.cn All Rights Reserved | 京ICP证050284号
总部地址:北京市东城区 灯市口大街33号 国中商业大厦2-3层
高国强 向我咨询
行业年龄 11年
成功案例 2937人
留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。
Tara 向我咨询
行业年龄 6年
成功案例 1602人
薛占秋 向我咨询
行业年龄 10年
成功案例 1869人
从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。
Cindy 向我咨询
行业年龄 18年
成功案例 4806人
精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。