2017-08-11 239阅读
在gmat数学准备的过程中,有些知识点总是会被童鞋们遗漏。所以,今天的资讯,澳际就将这些容易被遗忘的gmat数学知识点,进行了简单地整理,还请大家重点注意下!在此,小编提前预祝各位早日拿到理想的gmat数学分数!
在gmat数学部分,这些知识点容易被正在进行gmat数学准备的孩纸遗漏:
1 )算术:① 数的概念;② 数的性质;③ 最大公约数和最小公倍数;④ 数整除的概念;⑤ 同余的概念和性质;⑥ 质数和和合数的概念;⑦ 奇数和偶数的概念;⑧ 分数和小数的概念;⑨ 集合和统计的问题;⑩ 排列组合问题;概率问题;
2)代数:① 幂的运算;② 数列;③ 实数概念;④ 因式分解;⑤ 方程概念;⑥ 不等式概念;⑦ 函数概念;
3)几何:① 平面几何:a. 三角形;b. 圆;c. 正方形;d. 长方形;e. 平行四边形;f. 菱形;g. 梯形;h. 平行的概念;i. 圆和多边形;j. 多边形;② 立体几何a. 正方形;b. 圆锥;c. 圆柱;d. 长方形;e. 球;③ 平面直角坐标系a. 坐标平面和四个象限;b. 坐标平面点的对称性;c. 斜率;d. 截距e. 两点之间距离;f. 直线方程;g. 抛物线;
延伸:gmat数学常考知识点,想拿理想gmat数学分数的考生,务必注意:
奇偶性:
需要注意的两点:1.负数也有奇偶性。 2. 数字0因为能够被2整除,所以是偶数。
性质:1.奇数+/-奇数=偶数;偶数+/-偶数=偶数;偶数+/-奇数=奇数;(只要相同就是偶)2.偶数*奇数=偶数;偶数*偶数=偶数;奇数*奇数=奇数(只要有偶就是偶)
质合性:
任何一个大于2的偶数都可以表示为两个质数的和。
大于2的质数都是奇数,数字2是质数中唯一的偶数。
数字1既不是质数,也不是合数。
因子和质因子:
任何一个大于1的正整数,无论是质数还是合数都可以表示质数因子相乘的形式。
任意一个自然数的因子的个数为质因数分解式中每个质因子的指数加1相乘的积。
一个完全平方数的因子个数必然为奇数;反之,任何一个自然数若有奇数个因子,这个自然数必为完全平方数。若它有偶数个因子,则此自然数一定不是完全平方数。
只有2个因子的自然数都是质数。
若自然数N不是完全平方数,则N的因子中小于根号N的因子占一半,大于根号N的因子也占一半。
若自然数N是完全平方数,并且根号N也是N的一个因子,那么在N的所有因子中除去根号N之外,小于根号N的因子占余下的一半,大于根号N的因子也占余下的一半。
如果自然数N有M个因子,M为大于2的质数,那么N必为某一质数的(M-1)次方。这是gmat数学中较难的一块,考生需要多多学习。
连续性:
如果N个连续整数或者连续偶数相加等于零(N为大于1的自然数),则N必为奇数。(注意要把0算上)
若N个连续奇数相加等于零(N为大于1的自然数),则N必为偶数。
奇数个连续整数的算术平均值等于这奇数个数中中间那个数的值。
偶数个连续整数的算术平均值等于这偶数个数中中间两个数的算术平均值。
前N个大于0的奇数的和为N^2。
任何两个连续整数中,一定是一奇一偶,它们的乘积必定为偶数。
任何三个连续整数中,恰好一个数是3的倍数,并且这三个连续整数之积能够被6整除。
若三个连续的自然数的算术平均值为奇数,则这三个自然数的乘积必为8的倍数。
若三个连续的自然数的算术平均值为奇数,则这三个自然数的乘积必为24的倍数。
数的开方和乘方:
a^n means the nth power of a.
自然数N次幂的尾数循环特征:尾数为2的数的幂的个位数一定以2,4,8,6循环;尾数为3的数的幂的个位数一定以3,9,7,1循环;尾数为4的数的幂的个位数一定以4,6循环;尾数为7的数的幂的个位数一定以7,9,3,1循环;尾数为8的数的幂的个位数一定以8,4,2,6循环;尾数为9的数的幂的个位数一定以9,1循环。这一点是gmat数学真题中经常出现的考试知识,考生务必完全掌握。
整除特性:能够被2整除的数其个位一定是偶数;能够被3整除的数是各位数的和能够被3整除;能够被4整除的数是最后两位数能够被4整除;能够被5整除的数的个位是0或5;能够被8整除的数是最后三位能够被8整除;能够被9整除的数是各位数的和能够被9整除;能够被11整除的数是其奇数位的和减去偶数位的和的差值可以被11整除;(记住:一个数要想被另一个数整除,该数需含有对方所具有的质数因子。)整除这一块在gmat考试中最令考生感到麻烦,因为英文理解错误的话解题思路就会完全相反。
今天的文章,澳际整理了gmat数学准备中,经常会被考生们遗漏的gmat数学知识点,希望大家能够记一记,在之后的复习中千万不要再忘记!想要了解更多数学资讯不?想早点拿到更满意的gmat数学分数不?欢迎继续锁定澳际教育官方网站!感谢阅读!
澳际六步曲第三步文书创作与学校申请根据申请者个人特点和录取委员会的思维逻辑进行纯英文创作。我们追求用地道的英语精彩展现申请人的特点,将Be Yourself 和Admission Officers' Thinking在每一份文书中完美结合。这不仅极大增加了成功机会,也让文书的写作变成了与我们的用户进行心灵交流的一种仪式。这个过程,不断感动着参与到其中的我们并为此骄傲。文书创作与学校申请具体服务项目如下:
1. 根据各项考试成绩和背景提升情况最终确定学校和专业
2. 根据所选学校的要求和特点制定有针对性的申请方案
3. 根据所选学校的要求和特点创作有针对性的申请文书
4. 指导申请人完成Writing Sample/Research Proposal 和Portfolio 的制作
5. 指导申请人办理成绩单、在读证明、毕业证明,存款证明等相关申请材料
6. 指导申请人完成网上申请和邮寄申请材料
Copyright 2000 - 2020 北京澳际教育咨询有限公司
www.aoji.cn All Rights Reserved | 京ICP证050284号
总部地址:北京市东城区 灯市口大街33号 国中商业大厦2-3层
高国强 向我咨询
行业年龄 11年
成功案例 2937人
留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。
Tara 向我咨询
行业年龄 6年
成功案例 1602人
薛占秋 向我咨询
行业年龄 10年
成功案例 1869人
从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。
Cindy 向我咨询
行业年龄 18年
成功案例 4806人
精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。