2017-08-10 139阅读
222、有道射线的题, 在第一象限 有四条从O出发的射线,P1 P2 P3 P4, P1与Y成20° P2&P1 15° 依次 25° 30°,求连续的2条射线的夹角有多少个。
A.4 B 6 C 8.后面忘记了
P2&P1 15° 依次 25° 30° 如果理解为是P2&P1 15° P2&P3 25° P4& P3 30°
20° +15° +25°+30°=90°
所以P4应该是X轴
连续的2条射线的夹角有3个
223、J工作40小时赚的是否比H 37.5小时赚的多?
(1)J 每小时赚$**
(2)....
答案:最后选的E
条件一不充分
待补充……
224、DS:一个关于三角形外角的题,是个画图题,问X角是多少度
(1)W角加y角=240 (2)w=y=z
答案:最后应该选的B.
225、个三角形 一个角45度 一个角60度 45度对应的边长是2 60度对应边长是x
求x 用正弦定理吧(忘了是不是叫这个了) 2/sin45=x/sin60
正弦定理:
Sine theorem
在一个三角形中,各边和它所对角的正弦的比相等。
即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍)
这一定理对于任意三角形ABC,都有
a/sinA=b/sinB=c/sinC=2R
R为三角形外接圆半径
所以此题:2/sin45=x/sin60可以求出X=根号6
sin30°=1╱2
sin45°=√2╱2
sin60°=√3╱2
sin90°=1
sin180°=0
sin0°=0
sin270°=-1
补充余弦定理:
对于任意三角形中任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的两倍积: 三边为a,b,c 三角为A,B,C 满足性质
(注:a*b、a*c就是a乘b、a乘c 。a^2、b^2、c^2就是a的平方,b的平方,c的平方。)
a^2=b^2+c^2-2*b*c*CosA
b^2=a^2+c^2-2*a*c*CosB
c^2=a^2+b^2-2*a*b*CosC
CosC=(a^2+b^2-c^2)/2ab
CosB=(a^2+c^2-b^2)/2ac
CosA=(c^2+b^2-a^2)/2bc
Copyright 2000 - 2020 北京澳际教育咨询有限公司
www.aoji.cn All Rights Reserved | 京ICP证050284号
总部地址:北京市东城区 灯市口大街33号 国中商业大厦2-3层
高国强 向我咨询
行业年龄 11年
成功案例 2937人
留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。
Tara 向我咨询
行业年龄 6年
成功案例 1602人
薛占秋 向我咨询
行业年龄 10年
成功案例 1869人
从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。
Cindy 向我咨询
行业年龄 18年
成功案例 4806人
精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。