2017-08-06 315阅读
SAT数学试题的考查范围是大家在备考SAT数学考试的时候一个最基本的框架,所有的SAT数学备考都是围绕着这个范围进行的。下面为大家整理了关于SAT数学试题考查范围的相关信息,供大家参考借鉴。
I. ARITHMETIC
A. Whole numbers
1. Operations—addition, subtraction, multiplication, division
2. Prime and composite numbers
3. Factors and divisors
B. Fractions
1. Types—proper, improper, mixed numbers
2. Operations
C. Decimals
1. Operations
2. Conversions
a) Decimals to fractions
b) Fractions to decimals
3. Rounding and approximation
4. Powers of 10
a) Multiplication
b) Division
c) Scientific notation
D. Percent
1. Conversions
a) Percent to decimal
b) Decimal to percent
2. Percent problems
E . Ratio and proportion
F . Square roots
G. Averages
H . Metric measurement
II. ALGEBRA
A . Signed numbers
1. Absolute value
2. Inequality and order of signed numbers
3. Addition, subtraction, multiplication, division
4. Order of operations
5. Grouping symbols
6. Evaluating algebraic expressions and formulas
B. Properties of operations
1. Commutative properties
2. Associative properties
3. Distributive properties
4. Special properties of zero
5. Special properties of one
6. Additive and multiplicative inverses
C . Operations with polynomials
1. Exponents and coficients
2. Addition and subtraction
3. Multiplication
4. Division
D . Equations in one variable
1. Methods of solution
2. Literal equations
E . Inequalities in one variable
F . Systems of equations and inequalities in two variables
G. Verbal Problems
1. Number
2. Consecutive integer
3. Motion
4. Coin
5. Mixture
6. Age
7. Work
8. Variation—direct and inverse
H. Special products and factoring
1. Common monomial factors
2. Trinomials of the form ax2 + bx + c
3. Difference of two squares
4. Complete factoring
I. Algebraic fractions
1. Simplifying fractions
2. Multiplication
3. Division
4. Addition and subtraction
a) Same denominators
b) Different denominators
5. Complex fractions
6. Equations involving fractions
J . Radicals and irrational numbers
1. Simplifying radicals
2. Addition and subtraction of radicals
3. Multiplication and division of radicals
4. Rationalizing denominators
5. Radical equations
6. Fractional exponents
K. Solution of quadratic equations
1. Factoring
2. Completing the square
3. Formula
L. Graphing
1. Ordered pairs in the plane
2. Methods of graphing linear equations
a) Pairs in the solution set
b) Intercepts
c) Slope and slope-intercept method
3. Parallel and perpendicular lines
4. Graphing inequalities
5. Graphical solution of systems of equations
M . Solution of simple cubic equations
1. Factor theorem
2. Remainder theorem
3. Synthetic division
4. Irrational and complex roots
5. Solving simple cubic equations
III. GEOMETRY
A . Angles
1. Types—acute, right, obtuse
2. Complements and supplements
3. Vertical angles
B . Lines
1. Parallel lines and their angles
2. Perpendicular lines
C. Triangles
1. Sum of the angles
2. Congruent triangles
3. Similar triangles
4. Special triangles
a) Isosceles
b) Equilateral
c) Right (Pythagorean Theorem)
5. Vectors
D . Polygons
1. Quadrilaterals
a) Parallelogram
b) Rectangle
c) Square
d) Rhombus
e) Trapezoid
f) Regular Polygons
E. Circles
1. Special lines and their related angles
a) Radius and diameter
b) Chord
c) Tangent
d) Secant
2. Angle and arc measurement
3. Polygons inscribed in circles
F . Perimeter and area
1. Triangles
2. Polygons
3. Circles
a) Circumference and arc length
b) Area of sectors and segments
G . Volume
1. Pyramid
2. Prism
3. Cylinder
4. Cone
5. Sphere
6. Cube
7. Rectangular solid
H . Coordinate geometry
1. Coordinate representation of points
2. Distance between two points
3. Midpoint of a line segment
4. Slope of a line
5. Parallel and perpendicular lines
I. Basic trigonometry
1. Dinitions of sine, cosine, tangent
2. Trigonometry in special triangles
a) 30°–60°–90° triangle
b) Isoceles right triangle
3. Trigonometric problems
a) Angle of elevation
b) Angle of depression
IV. FUNCTIONS AND THEIR GRAPHS
A . Relations and functions
1. Ordered pairs
2. Function notation
3. Domain and range
4. One-to-one functions
5. Inverse functions
6. Combining functions
a) Addition, subtraction, multiplication, division
b) Composition
B. Graphs
1. Linear
a) Slope
b) Intercepts
2. Special functions
a) Absolute value function
b) Step functions
3. Polynominal and rational functions
a) Quadratic—parabola
i. Axis of symmetry
ii. Vertex
b) Cubics
c) Hyperbola of the form xy = k
4. Related non-function graphs
a) Circle
b) Ellipse
c) Hyperbola of the form ax2 – by2 = c
5. Graphs of inverse functions
V. REAL NUMBER SYSTEM
A . Subsets of the real numbers
1. Natural numbers
a) Primes
b) Composites—prime factorization
2. Integers
a) Multiples and divisors
i. Factors
ii. Divisibility
iii. Least common multiple
iv. Greatest common divisor
v. Perfect squares
b) Odd and even integers
3. Rational and irrational numbers
a) Decimal representations
b) Simplification of radicals and exponents
c) Identifying rational and irrational numbers
B . Operations and properties
1. Properties of the binary operations
a) Closure
b) Commutative properties
c) Associative properties
d) Distributive properties
2. Absolute value
3. Real number line
a) Order
b) Density
c) Completeness
4. Properties of zero and one
a) Identity elements
b) Additive and multiplicative inverses
c) Division involving zero
d) Zero as an exponent
5. Nature of the roots of quadratic equations
6. Pythagorean triples
VI. LOGIC
A . Propositions
1. Simple statements
a) Symbols
b) Quantifiers (all, some)
2. Negation
3. Compound statements
a) Conjunction
b) Disjunction
c) Implication (conditional statements)
i. Necessary conditions
ii. Sufficient conditions
iii. Equivalence (necessary and sufficient conditions)
d) Derived implications
i. Converse
ii. Inverse
iii. Contrapositive
B . Truth tables
C . Methods of proof
1. Valid arguments
a) Direct
b) Indirect—contradiction and counterexample
2. Invalid arguments—fallacies
VII. SETS
A . Meaning and symbols
1. Set notation
2. Set membership
3. Ordered pairs
4. Cardinality of a set
B . Types of sets
1. Finite
2. Infinite
3. Empty
C. Relationships between sets
1. Equal sets
2. Equivalent sets
3. Subsets
4. Complements
D. Set Operations
1. Union
2. Intersection
3. Cartesian products
4. Laws of set operations
5. Closure
E . Venn diagrams
VIII. TRIGONOMETRY
A. Trigonometry of the right triangle
1. Dinitions of the six functions
2. Relations of the functions of the complementary angles
3. Reciprocal relations among the functions
4. Variations in the functions of acute angles
5. Pythagorean and quotient relations
6. Functions of 30°, 45°, and 60°
7. Applications of the functions to right triangle problems
B. Trigonometric functions of the general angle
1. Generating an angle of any size
2. Radians and degrees
3. Using radians to determine arc length
4. Dinitions of the functions of an angle
5. Signs of the functions in the four quadrants
6. Functions of the quadrantal angle
7. Finding the value of functions of any angle
C . Identities and equations
1. Difference between identities in equations
2. Proving identities
3. Solving linear trigonometric functions
4. Solving trigonometric quadratic equations
D . Generalized trigonometric relationships
1. Functions of the sum of two angles
2. Functions of the difference of two angles
3. Functions of the double angle
4. Functions of the half angle
E . Graphs of trigonometric functions
1. Graphs of the sine, cosine, and tangent curves
2. Properties of the sine, cosine, and tangent curves
3. Dinitions of amplitude, period, and frequency
4. Solving trigonometric equations graphically
F . Solutions of oblique triangles
1. Law of sines
2. Law of cosines
3. Using logarithms to solve oblique triangle problems
4. Vector problems—parallelogram of forces
5. Navigation problems
IX. MISCELLANEOUS TOPICS
A. Complex numbers
1. Meaning
2. Operations
a) Addition and subtraction
b) Multiplication and division
i. Powers of i
ii. Complex conjugate
3. Complex roots of quadratic equations
B . Number Bases
1. Converting from base 10 to other bases
2. Converting from other bases to base 10
3. Operations in other bases
C . Exponents and logarithms
1. Meaning of logarithms
2. Computation with exponents and logarithms
3. Equations
4. Graphs of exponential and logarithmic functions
D . Binary operations
1. Dinition of binary operations
2. Properties of binary operations
3. Application to modular arithmetic
E . Identity and inverse elements
1. Addition
2. Multiplication
3. Other operations
以上就是SAT数学试题考查范围的全部内容,包括了代数和几何的大部分基础知识,非常实用。大家在备考SAT数学试题的时候,可以按照上面所列的范围进行查缺补漏,这样就能更加全面的备考SAT数学考试了。
更多SAT数学相关:
SAT数学考试什么时候用计算器?
SAT数学解题方法之逻辑推理
SAT数学考试内容介绍
两道SAT数学试题及其解法
Copyright 2000 - 2020 北京澳际教育咨询有限公司
www.aoji.cn All Rights Reserved | 京ICP证050284号
总部地址:北京市东城区 灯市口大街33号 国中商业大厦2-3层
高国强 向我咨询
行业年龄 11年
成功案例 2937人
留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。
Tara 向我咨询
行业年龄 6年
成功案例 1602人
薛占秋 向我咨询
行业年龄 10年
成功案例 1869人
从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。
Cindy 向我咨询
行业年龄 18年
成功案例 4806人
精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。