SAT数学做题常用公式.

2017-08-06 作者: 366阅读

  想要快速解答SAT数学题目,大家最先需要掌握的就是词汇和公式了。SAT数学常用的公式并不多,所以一定要要大家熟练记忆。虽然考试的饿时候试卷上会标明,但是建议大家只有在自己熟练的前提下才能更加深刻的理解题目的含义并正确解答。

  (做题时会遇到的相关概念将于下篇出现,这里只是单独的公式集锦)

  1.抛物线:y = a(x^2) + bx + c

  (y等于ax 的平方加上 bx再加上 c )

  a > 0时开口向上a 0 )

  直接获取澳际名师服务点击进入>>>>有问题?找免费的澳际专家咨询! 或者通过在线咨询处留言,把您最关心的问题告诉我们。

  2. 椭圆(很少用到,知道就可以了)

  1)周长公式:L=2πb+4(a-b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  2)面积公式 :S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

  3. 菱形面积=对角线乘积的一半,即S=(a×b)÷2

  4. 三角形面积:

  1)已知三角形底a,高h,则S=ah/2

  2)已知三角形三边a,b,c,半周长p,则

  S= √[p(p - a)(p - b)(p - c)] (海伦公式)

  3)已知三角形两边a,b,这两边夹角C,则S=absinC/2

  4)已知三角形半周长p,内接圆半径r,则S=pr

  5.扇形面积:

  圆心角为n°,半径为r的扇形面积为(n/360)×π(r^2)

  如果其顶角采用弧度单位,则可简化为1/2×弧度×半径平方。

  扇形还与三角形有相似之处,上述简化的面积公式亦可看成:1/2×弧长×半径,与三角形面积:1/2×底×高相似。

  6.梯形面积:[(上底+下底)×高] / 2

  7.矩形面积:长×宽

  8. 梯形体积

  V=〔S1+S2+√(S1*S2)〕/3*H )

  (V:体积;S1:上表面积;S2:下表面积;H:高)

  9. 圆柱体体积:V圆柱=S底×h

  10.长方体体积:V=长×宽×高

  11.正方体体积:V=棱长^3

  12.圆锥体体积: V=1/3×S底×h

  13.三角函数:

  1)两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

  2)倍角公式

  tan2A=2tanA/[1-(tan^2)A]

  cot2A=[(cot^2)A-1]/2cotA

  cos2A=cos^2A-sin^2=2(cos^2)A-1=1-2(sin^2)A

  sin2A=2sinAcosA

  3)半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=(+&-)√((1-cosA)/((1+cosA))=√(sinA/(1+cosA)) =√((1-cosA)/sinA)

  cot(A/2)=(+&-)√((1+cosA)/((1-cosA))

  4)和差化积

  2sinAcosB=sin(A+B)+sin(A-B)

  2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2)

  cosA+cosB=2cos((A+B)/2)cos((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB

  5) 积化和差公式:

  sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]

  cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]

  cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]

  sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]

  6)正弦定理 a/sinA=b/sinB=c/sinC=2R

  (R 表示三角形的外接圆半径)

  7)余弦定理 b^2=a^2+c^2-2accosB

  (B是边a和边c的夹角)

  8) 基本关系式:

  •平方关系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  •积的关系:

  sinα=tanα*cosα cosα=cotα*sinα

  tanα=sinα*secα cotα=cosα*cscα

  secα=tanα*cscα cscα=secα*cotα

  •倒数关系:

  tanα•cotα=1

  sinα•cscα=1

  cosα•secα=1

  14.勾股定理:

  a,b,c分别代表直角三角形的勾、股、弦三边之长

  (a^2)+(b^2)=(C^2)

  其变形b^2=c^2-a^2=(c-a)(c+a)

  a^2=c^2-b^2=(c-b)(c+b),

  c^2=2ab+(b-a)^2

  15.某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n^2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  16.等差数列:

  1)等差数列通项公式:an=a1+(n-1)d

  2)前n项和公式:Sn=na1+[n(n-1)d]/2或Sn=n(a1+an)/2

  17.等比数列:

  1)等比数列通项公式:an=a1•q^(n-1)

  2) 前n项和公式:当 q= 1时,Sn=na1

  当 q≠1 时, Sn=[a1(1-q^n )] /(1-q)或Sn=(a1-anq)/(1-q)

  18. 一元一次方程

  一般形式:ax+b=0(a、b为常数,a≠0)

  19.一元二次方程:

  一般形式:ax^2+bx+c=0(a、b、c为常数,a≠0)

  20. 韦达定理:

  一元二次方程ax^2+bx+c (a不为0)中

  设两个根为X1和X2

  则X1+X2= - b/a

  X1*X2=c/a

  21.阶乘

  1×2×3×……×n=x,x就是n的阶乘

  以上就是关于SAT数学题的解答公式的总结,主要都是中国高中国生在高中二年级之前学习过的,所以并不难。难的是中国考生需要把这个用法用在SAT数学考试的题目中,这就需要大家提前做一些准备了。

澳际倾情回馈客户,零利润SAT香港考团,详细信息

更多SAT考试相关:

北京SAT考试培训

SAT数学专业词汇D

SAT数学考试考场如何答题?

SAT数学考试答题最高原则

留学咨询

更多出国留学最新动态,敬请关注澳际教育手机端网站,并可拨打咨询热线:400-601-0022
  • 专家推荐
  • 成功案例
  • 博文推荐
  • 高国强 向我咨询

    行业年龄 11年

    成功案例 2937人

    留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。

  • Tara 向我咨询

    行业年龄 6年

    成功案例 1602人

  • 薛占秋 向我咨询

    行业年龄 10年

    成功案例 1869人

    从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。

  • Cindy 向我咨询

    行业年龄 18年

    成功案例 4806人

    精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。

  • 重磅利好! 澳洲对中国开放10年签证!中澳多个直飞航班也将上线!

    503人阅读 查看原文

  • 澳八大里的中国留学生都在学什么专业?最热门专业汇总,码住!

    1304人阅读 查看原文

  • 澳洲某神仙专业只需1年,毕业就能拿PR!5所高校该课程已获当地认证!

    946人阅读 查看原文

  • PTE寒假班招生计划!

    1180人阅读 查看原文

我要查

澳际服务

我要读

热门国家申请