掌握SAT数学方差公式.

2017-08-06 作者: 324阅读

  下面澳际小编为大家整理了SAT数学方差公式,大家可以参考自己的备考状态然后对SAT数学考试进行更加有针对性的总结。

  一.方差的性质

  1.设C为常数,则D(C) = 0(常数无波动);

  2. D(CX )=C2 D(X ) (常数平方提取);

  证:

  特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)

  3.若X 、Y 相互独立,

  证:则前面两项恰为 D(X )和D(Y ),第三项展开后为

  当X、Y 相互独立时,

  故第三项为零。

  特别地

  独立前提的逐项求和,可推广到有限项。

  方差公式:

  平均数:M=(x1+x2+x3+…+xn)/n (n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)

  方差公式:S²=〈(M-x1)²+(M-x2)²+(M-x3)²+…+(M-xn)²〉╱n

  二.方差的概念与计算公式

  例1 两人的5次测验成绩如下:

  X: 50,100,100,60,50 E(X )=72;

  Y: 73, 70, 75,72,70 E(Y )=72。

  平均成绩相同,但X 不稳定,对平均值的偏离大。

  方差描述随机变量对于数学期望的偏离程度。

  单个偏离是

  消除符号影响

  方差即偏离平方的均值,记为D(X ):

  直接计算公式分离散型和连续型,具体为:

  这里 是一个数。推导另一种计算公式

  得到:“方差等于平方的均值减去均值的平方”。

  其中,分别为离散型和连续型计算公式。 称为标准差或均方差,方差描述波动

  三.常用分布的方差

  1.两点分布

  2.二项分布

  X ~ B ( n, p )

  引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布)

  3.泊松分布(推导略)

  4.均匀分布

  另一计算过程为

  5.指数分布(推导略)

  6.正态分布(推导略)

  7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2);

  8.F分布:其中X~F(m,n),E(X)=n/(n-2);

  正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。

  例2 求上节例2的方差。

  解 根据上节例2给出的分布律,计算得到

  工人乙废品数少,波动也小,稳定性好。

  方差的定义:

  设一组数据x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1-x拔)²,(x2-x拔)²······(xn-x拔)²,那么我们用他们的平均数s2=1/n【(x1-x拔)²+(x2-x拔)²+·····(xn-x拔)²】来衡量这组数据的波动大小,并把它叫做这组数据的方差。

  以上就是SAT数学方差公式的具体介绍,分享给大家,希望对大家备考SAT数学考试有所帮助,澳际小编祝大家都能考出好成绩。

留学咨询

更多出国留学最新动态,敬请关注澳际教育手机端网站,并可拨打咨询热线:400-601-0022
  • 专家推荐
  • 成功案例
  • 博文推荐
  • 高国强 向我咨询

    行业年龄 11年

    成功案例 2937人

    留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。

  • Tara 向我咨询

    行业年龄 6年

    成功案例 1602人

  • 薛占秋 向我咨询

    行业年龄 10年

    成功案例 1869人

    从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。

  • Cindy 向我咨询

    行业年龄 18年

    成功案例 4806人

    精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。

  • 重磅利好! 澳洲对中国开放10年签证!中澳多个直飞航班也将上线!

    510人阅读 查看原文

  • 澳八大里的中国留学生都在学什么专业?最热门专业汇总,码住!

    1307人阅读 查看原文

  • 澳洲某神仙专业只需1年,毕业就能拿PR!5所高校该课程已获当地认证!

    950人阅读 查看原文

  • PTE寒假班招生计划!

    1183人阅读 查看原文

我要查

澳际服务

我要读

热门国家申请