2017-08-06 258阅读
下面是关于SAT数学三角函数公式内容总结,包括了SAT数学考试中出现次数很多的三角函数部分的公式。这些公式大部分都没有出现在数学教科书中,都是一些比较便捷的解题技巧,大家一起来看看详细内容吧。
SAT数学三角函数公式1)两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
SAT数学三角函数公式2)倍角公式
tan2A=2tanA/[1-(tan^2)A]
cot2A=[(cot^2)A-1]/2cotA
cos2A=cos^2A-sin^2=2(cos^2)A-1=1-2(sin^2)A
sin2A=2sinAcosA
SAT数学三角函数公式3)半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=(+&-)√((1-cosA)/((1+cosA))=√(sinA/(1+cosA)) =√((1-cosA)/sinA)
cot(A/2)=(+&-)√((1+cosA)/((1-cosA))
SAT数学三角函数公式4)和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2)
cosA+cosB=2cos((A+B)/2)cos((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
SAT数学三角函数公式5) 积化和差公式
sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]
SAT数学三角函数公式6)正弦定理 a/sinA=b/sinB=c/sinC=2R(R 表示三角形的外接圆半径)
SAT数学三角函数公式7)余弦定理 b^2=a^2+c^2-2accosB
(B是边a和边c的夹角)
SAT数学三角函数公式8) 基本关系式
•平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
•积的关系:
sinα=tanα*cosα cosα=cotα*sinα
tanα=sinα*secα cotα=cosα*cscα
secα=tanα*cscα cscα=secα*cotα
•倒数关系:
tanα•cotα=1
sinα•cscα=1
cosα•secα=1
以上就是SAT数学三角函数公式详细内容,非常实用。大家在备考SAT数学考试的时候,最好对这些公式的内容进行更加详细的了解和应用,这样就能更加有效的备考并参加考试了。
Copyright 2000 - 2020 北京澳际教育咨询有限公司
www.aoji.cn All Rights Reserved | 京ICP证050284号
总部地址:北京市东城区 灯市口大街33号 国中商业大厦2-3层
高国强 向我咨询
行业年龄 11年
成功案例 2937人
留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。
Tara 向我咨询
行业年龄 6年
成功案例 1602人
薛占秋 向我咨询
行业年龄 10年
成功案例 1869人
从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。
Cindy 向我咨询
行业年龄 18年
成功案例 4806人
精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。