2017-08-06 264阅读
SAT数学相比于其他科目来说还算是比较简单的,大家需要注意SAT数学单词的积累,平时多做SAT数学练习题,下面澳际小编想要跟大家分享的是SAT数学考察的重点是逻辑分析能力,希望大家可以多多关注。
考生在复习SAT数学部分的时候,要注重提高自己的逻辑推理能力,因为数学的解题能力与逻辑推理存在一定区别。虽然重视的逻辑分析能力,但大家也一定不能忽视SAT数学单词以及SAT数学练习题的重要性。
SAT数学中有一类考题,主要涉及到逻辑推理,和数学运算毫无关联。经常用到的解题技巧如代入法和特殊值法面对这类题均不合适。虽然这类SAT数学考题数量较少,但十分新颖。
由于考生往往不太熟悉逻辑推理法,在没有准备的情况下一旦遇到该类型的考题容易卡壳,迷惑不解。
在此,我们特就这类考题介绍一下适当的分析方法。凭借诸如此类的技巧,考生对此类考题就能迎刃而解。
举一个例子:
Family Numbers of Consecutive Nights
Jackson 10
Callan 5
Epstein 8
Liu 6
Benton 8
The table above shows the number of consecutive nights that each of five families stayed at a certain hotel during a 14-night period. If the Liu family’s stay did not overlap with the Benton family’s stay, which of the 14 nights could be a night on which only one of the five families stayed at the hotel?
A. The 3rd B. The 5th C. The 6th D. The 8th E. The 10th
考生看到这类题,容易不知所措,因为下笔的切入点很难判断。在解答这类需要使用逻辑推理而不是数学运算的考题过程中,一个重要的解题技巧就是考生需要首先要对If从句给予足够多的重视。If从句往往给出了解题的逻辑推理需要的基本条件。
在本题中,If从句表明了在安排各家在酒店的入住时间时,安排入住时间的必要条件是Liu与Benton两家在酒店中居住的时间不会有交叉。考虑到Liu连续入住了6 天,Benton连续入住了8天,而5家人在酒店的总入住时间只有14天,这说明Liu与Benton在酒店的入住时间只能是首尾相接,占满14天。
从另一个方面解读这个前提条件也就意味着,在酒店的14天内,无论其它的3家人如何安排,每天都会至少有一家人(Liu或Benton)入住酒店。
此时,考生需要进一步考虑题目中给出的第二个限定条件,也就是Jackson family。之所以在剩下的三家人中选择Jackson,主要是由于他们在剩余家庭里是呆得时间最长的,因此他们的入住时间可以包含剩下的其他两家人,故而只要从Jackson家看起即可。
如果要满足Jackson一家在酒店连续入住10天的条件,那么他们不在酒店入住的日期只可能在前4天或者后4天之间这两个区间。考虑到Liu与Benton家的安排,这也就是说只有一家人在酒店入住只可能在前4天或后4天。由此可见,答案为A。
以上就是澳际小编今天给大家介绍的内容,希望大家对于SAT数学考察的重点有所了解,重视SAT数学单词的积累以及SAT数学练习题的训练。如果大家还有什么问题的话,欢迎大家关注澳际教育网SAT频道。
澳际培训SAT考前冲刺班:
【课程特色】
实战精讲,攻破难点,应试策略,考试回顾,题目预测。
【授课教材】
SAT历年真题
名师内部讲义
【课程简介】
写作、语法、词汇、阅读、数学全面备考,考前最后冲刺辅导
【适合人群】
马上参加SAT考试的学生。
Copyright 2000 - 2020 北京澳际教育咨询有限公司
www.aoji.cn All Rights Reserved | 京ICP证050284号
总部地址:北京市东城区 灯市口大街33号 国中商业大厦2-3层
高国强 向我咨询
行业年龄 11年
成功案例 2937人
留学关乎到一个家庭的期望以及一个学生的未来,作为一名留学规划导师,我一直坚信最基本且最重要的品质是认真负责的态度。基于对学生和家长认真负责的原则,结合丰富的申请经验,更有效地帮助学生清晰未来发展方向,顺利进入理想院校。
Tara 向我咨询
行业年龄 6年
成功案例 1602人
薛占秋 向我咨询
行业年龄 10年
成功案例 1869人
从业3年来成功协助数百同学拿到英、美、加、澳等各国学习签证,递签成功率90%以上,大大超过同业平均水平。
Cindy 向我咨询
行业年龄 18年
成功案例 4806人
精通各类升学,转学,墨尔本的公立私立初高中,小学,高中升大学的申请流程及入学要求。本科升学研究生,转如入其他学校等服务。